Experimental Study on Flight Time and Frame Toughness of Quadcopter Based on Waste Polystyrene Paper

Mastariyanto Perdana, Meiki Eru Putra, Farid Septio Matrilindo

Abstract


Application of natural composite materials for aerial fields has been widely developed. One of the uses of natural composite materials for Unmanned Aerial Vehicle (UAV) frame. In this study, waste polystyrene paper, bagasse powder and eggsheel powder was used for material of UAV frame. Type of UAV was made in this study is quadcopter. Addition of volume fraction of waste polystyene paper to 65 % in green composite material.  The aims this study was determine the flight time and toughness frame of quadcopter based on waste materials. This study showed that there was increase of quadcopter flight time with the addition of  waste polystyrene paper in composites up 65% by volume fraction. Addition of  waste polystyrene paper in composites up 65% by volume fraction, the results showed that the toughness frame of quadcopter was decreased. Photomacro was used to show the stucture and porosity of frame quadcopter based on natural composite material.

Keywords


green composite; waste polymer; drone; fracture surface; reinforcement.

Full Text:

PDF

References


S. S. Kumar, “Dataset on Mechanical Properties of Natural Fiber Reinforced Polyester Composites for Engineering Applications,” Data Br., vol. 28, p. 105054, 2020, doi: 10.1016/j.dib.2019.105054.

M. Perdana and R. P. Yulsardi, “Pengaruh Fraksi Volume Penguat Terhadap Kekuatan Lentur Green Composite Untuk Aplikasi Pada Bodi Kendaraan,” J. Iptek Ter. Kopertis Wil. X, vol. 3, pp. 71–77, 2015.

C. Elanchezhian, B. V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, and M. K. Saravanakumar, “Review on Mechanical Properties of Natural Fiber Composites.,” in Materials Today: Proceedings, 2018, vol. 5, no. 1, pp. 1785–1790, doi: 10.1016/j.matpr.2017.11.276.

H. Hadiji et al., “Damping Analysis of Nonwoven Natural Fibre-reinforced Polypropylene Composites Used in Automotive Interior Parts,” Polym. Test., vol. 89, no. June, p. 106692, 2020, doi: 10.1016/j.polymertesting.2020.106692.

K. Hariprasad, K. Ravichandran, V. Jayaseelan, and T. Muthuramalingam, “Acoustic and Mechanical Characterisation of Polypropylene Composites Reinforced by Natural Fibres for Automotive Applications,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 14029–14035, 2020, doi: 10.1016/j.jmrt.2020.09.112.

M. Perdana, “Pengaruh Beban Dinamik terhadap Kekakuan ( Stiffness ) Komposit Hibrid Berbasis Fiberglass dan Coir,” Tek. Mesin - Inst. Teknol. Padang, vol. 6, no. 1, pp. 1–5, 2016, doi: 10.21063/JTM.2016.V6.1.1-5.

T. N. Babu, R. Mageshvaran, T. Shankar, and P. Rama, D., “Specific Wear Rate of Epoxy Resin Based Composites Reinforced with Natural Fibers and Uni-Axial Glass Fibers for Biomedical Applications,” Int. J. Civ. Eng. Technol., vol. 8, no. 3, pp. 729–740, 2017.

K. tak Lau, P. yan Hung, M. H. Zhu, and D. Hui, “Properties of Natural Fibre Composites for Structural Engineering Applications,” Compos. Part B Eng., vol. 136, no. September, pp. 222–233, 2018, doi: 10.1016/j.compositesb.2017.10.038.

M. R. Bambach, “Durability of Natural Fibre Epoxy Composite Structural Columns: High Cycle Compression Fatigue and Moisture Ingress,” Compos. Part C Open Access, vol. 2, no. June, p. 100013, 2020, doi: 10.1016/j.jcomc.2020.100013.

A. Hussain, J. Calabria-Holley, D. Schorr, Y. Jiang, M. Lawrence, and P. Blanchet, “Hydrophobicity of Hemp Shiv Treated with Sol-gel Coatings,” Appl. Surf. Sci., vol. 434, pp. 850–860, 2018, doi: 10.1016/j.apsusc.2017.10.210.

F. O. Edoziuno, R. O. Akaluzia, B. U. Odoni, and S. Edibo, “Experimental study on tribological (dry sliding wear) behaviour of polyester matrix hybrid composite reinforced with particulate wood charcoal and periwinkle shell,” J. King Saud Univ. - Eng. Sci., no. xxxx, 2020, doi: 10.1016/j.jksues.2020.05.007.

F. D. C. Garcia Filho, M. S. Oliveira, A. C. Pereira, L. F. C. Nascimento, J. Ricardo Gomes Matheus, and S. N. Monteiro, “Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition,” J. Mater. Res. Technol., vol. 9, no. 2, pp. 1734–1741, 2020, doi: 10.1016/j.jmrt.2019.12.004.

M. K. Singh and S. Zafar, “Influence of Microwave Power on Mechanical Properties of Microwave-cured Polyethylene/Coir Composites,” J. Nat. Fibers, vol. 17, no. 6, pp. 845–860, 2020, doi: 10.1080/15440478.2018.1534192.

M. F. Zafar and M. A. Siddiqui, “Effect of Filler Loading and Size on the Mechanical and Morphological Behaviour of Natural Fibre-reinforced Polystyrene composites,” Adv. Mater. Process. Technol., vol. 00, no. 00, pp. 1–13, 2020, doi: 10.1080/2374068X.2020.1793261.

H. R. Taghiyari, S. B. Hosseini, S. Ghahri, M. Ghofrani, and A. N. Papadopoulos, “Formaldehyde emission in micron-sized wollastonite-treated plywood bonded with soy flour and urea-formaldehyde resin,” Appl. Sci., vol. 10, no. 19, 2020, doi: 10.3390/APP10196709.

Y. M. Ghazzawi, A. F. Osorio, and M. T. Heitzmann, “The effect of fibre length and fibre type on the fire performance of thermoplastic composites: The behaviour of polycarbonate as an example of a charring matrix,” Constr. Build. Mater., vol. 234, p. 117889, 2020, doi: 10.1016/j.conbuildmat.2019.117889.

M. D. Stanciu, H. T. Draghicescu, F. Tamas, and O. M. Terciu, “Mechanical and rheological behaviour of composites reinforced with natural fibres,” Polymers (Basel)., vol. 12, no. 6, 2020, doi: 10.3390/polym12061402.

M. Perdana, Prastiawan, and S. Hadi, “IOP Conference Series : Earth and Environmental Science Mechanical Properties of Composite Waste Material Based Styrofoam , Baggase and Eggshell Powder for Application of Drone Frames Mechanical Properties of Composite Waste Material Based Styrofoam , Bag,” in IOP Conf. Series: Earth and Environmental Science 97 (2017) 012034, 2017, pp. 1–7.

M. Perdana, Nurzal, S. Firdaus, and R. Saferi, “Waktu Terbang Quadcopter Berbahan Komposit Ramah Lingkungan,” J. Tek. Mesin ITP, vol. 8, no. 2, pp. 74–77, 2018.

A. G. Adeniyi, D. V. Onifade, S. A. Abdulkareem, M. K. Amosa, and J. O. Ighalo, “Valorization of Plantain Stalk and Polystyrene Wastes for Composite Development,” J. Polym. Environ., vol. 28, no. 10, pp. 2644–2651, 2020, doi: 10.1007/s10924-020-01796-7.

A. G. Adeniyi, S. A. Abdulkareem, J. O. Ighalo, D. V. Onifade, S. A. Adeoye, and A. E. Sampson, “Morphological and Thermal Properties of Polystyrene Composite Reinforced with Biochar from Elephant Grass (Pennisetum Purpureum),” J. Thermoplast. Compos. Mater., pp. 1–16, 2020, doi: 10.1177/0892705720939169.

M. Perdana, Nurzal, and R. Saferi, “Toughness and Fracture Surface of Frame of Drone Based on Green Composite Materials,” Sixth Annu. Southeast Asian Int. Semin., vol. 9, no. 9, pp. 41–49, 2019, [Online]. Available: doi.10.21063/JTM.2019.v9i2.57-63.

K. Chaisena, B. Nenchoo, and S. Tantrairatn, “Automatic Balancing System in Quadcopter with Change in Center of Gravity,” IOP Conf. Ser. Mater. Sci. Eng., vol. 886, no. 1, pp. 1–7, 2020, doi: 10.1088/1757-899X/886/1/012006.

K. W. Chan, U. Nirmal, and W. G. Cheaw, “Progress on Drone Technology and Their Applications: A Comprehensive Review,” in AIP Conference Proceedings, 2018, vol. 2030, no. November, pp. 1–20, doi: 10.1063/1.5066949.

F. Ahmad, P. Kumar, A. Bhandari, P. P. Patil, and Ghosala, “Finite Element Analysis Based Material Optimization of a Quadcopter Body Frame,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 8, no. 7, pp. 1342–1347, 2019.

E. A. Rencüzoğulları, A. Kılıç, and S. Kapucu, “Design Consideration: UAV System Architecture for Smart Applications,” no. December, 2018, [Online]. Available: https://www.researchgate.net/publication/329871981_Design_Consideration_UAV_System_Architecture_for_Smart_Applications.

R. Singh, R. Kumar, A. Mishra, and A. Agarwal, “Structural Analysis of Quadcopter Frame,” Mater. Today Proc., vol. 22, pp. 3320–3329, 2019, doi: 10.1016/j.matpr.2020.03.295.

A. Restas, “Drone Applications for Supporting Disaster Management,” World J. Eng. Technol., vol. 03, no. 03, pp. 316–321, 2015, doi: 10.4236/wjet.2015.33c047.

J. Xia, K. Wang, and S. Wang, “Drone Scheduling to Monitor Vessels in Emission Control Areas,” Transp. Res. Part B, vol. 119, pp. 174–196, 2019, doi: 10.1016/j.trb.2018.10.011.

F. F. Mueller and M. Muirhead, “Jogging with a quadcopter,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 2015, no. April, pp. 2023–2032, 2015, doi: 10.1145/2702123.2702472.

O. O. Patrick, E. O. E. Nnadi, and H. C. Ajaelu, “Effective Use of Quadcopter Drones for Safety and Security Monitoring in a Building Construction Sites : Case Study Enugu Metropolis Nigeria,” J. Eng. Technol. Res., vol. 12, no. 1, pp. 37–46, 2020, doi: 10.5897/JETR2020.0695.

M. I. Varentsov, A. Artamonov, A. D. Pashkin, and I. A. Repina, “Experience in the Quadcopter-based Meteorological Observations in the Atmospheric Boundary Layer,” in IOP Conference Series: Earth and Environmental Science, 2019, vol. 231, no. 1, pp. 1–10, doi: 10.1088/1755-1315/231/1/012053.

H. T. Arat and M. G. Sürer, “Experimental Investigation of Fuel Cell Usage on an Air Vehicle’s Hybrid Propulsion System,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26370–26378, 2020, doi: 10.1016/j.ijhydene.2019.09.242.

R. F. Alphonso, A. P. Irawan, and F. J. Daywin, “Design and Development of Quadcopter Prototype,” in 2nd International Conference on Engineering of Tarumanagara (ICET 2015), 2016, vol. 2, no. 3, pp. 887–891, [Online]. Available: https://www.researchgate.net/publication/299392327_Design_and_Development_of_Quadcopter_Prototype.

C. H. Hsieh, J. Huang, Z. Wang, M. Lv, F. Gao, and X. Wu, “Research and Analysis on Flight Stability Improvement of the Quadcopter,” Proc. - 5th Int. Conf. Autom. Control Robot. Eng. CACRE 2020, pp. 158–164, 2020, doi: 10.1109/CACRE50138.2020.9230092.

A. Gong and D. Verstraete, “Fuel Cell Propulsion in Small Fixed-Wing Unmanned Aerial Vehicles: Current Status and Research Needs,” Int. J. Hydrogen Energy, vol. 42, no. 33, pp. 21311–21333, 2017, doi: 10.1016/j.ijhydene.2017.06.148.


Refbacks

  • There are currently no refbacks.


Copyright of JTM (p-ISSN: 2089-4880   e-ISSN:2598-8263)